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1. Introduction. In this note we study a semilinear elliptic boundary value problem of
one parameter dependence which arises in population genetics, having nonlinear bound-
ary conditions. For some cases of sign indefinite weights, we investigate the existence
and asymptotic behavior of the minimal positive solution. The analysis uses the local
bifurcation theory from simple eigenvalues, super-sub-solution method and variational
technique.

Let D be a bounded domain of Euclidean space R, N > 2, with smooth boundary
0D . We here consider the following semilinear elliptic problem with nonlinear boundary
conditions:

u +g(u)u=0 on 0D, =

{ —Au = A(m(z)u —au?) in D,
Here

(1) A denotes the usual Laplacian Ejv:l 0?/0z% in RN, (2) X is a positive pa-
rameter, (3) m(z) is a real-valued Hélder continuous function on the closure D, which
may change its sign but satisfies m(zo) > 0 for some zo € D, (4) a is a positive
constant, (5) g(t) is a real-valued C?-function on [0,00) such that g(0) =0, and (6)
n is the unit outer normal to 8D .

A function u € C*(D) is called a positive solution of ()y if u satisfies (), and
©v>0in D.

The equation —Au = A(m(z)u—av?) in D is provided as a model of the population
density for some species, where )\ represents the reciprocal number of its diffusion
rate, m(z) its local growth rate, and a the eﬁ'ect of crowding for the species. For the
population density u, the boundary condition £ s +g(u)u =0 on 8D means that the
rate of inflow m.lgra.tlon at the border 8D is governed ‘nonlinearly by —g(u)u.

This note is devoted to an investigation of the set of positive solutions of () in
a general class of nonlinear boundary conditions. The discussion of the existence of
positive solutions and their stability for semilinear elliptic equations with nonlinear
boundary conditions can be found in [12, 6, 1, 11, 15, 17, 18].

To begin with, we consider the following linear eigenvalue problem:

{ —Ad=>mé inD,

0¢
n =0 on 8D.

(1.1)
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It is known that A = 0 is a simple eigenvalue of (1.1) with a positive eigenfunction.
Brown and Lin (3] has proved under condition [, mdz < 0 that problem (1.1) possesses
a unique eigenvalue A;(m) > 0 having a positive eigenfunction, and that it is simple.
Meanwhile, it is also shown in [3] that if fD mdz > 0, then problem (1.1) has no positive
eigenvalue with a positive eigenfunction, so that we set A;(m) = 0 in this case.

To solve problem (%)) means the consideration of the existence of the steady state
for the following initial boundary value problem

ov 1 o

5 = XAv—!—(mvﬂ-a'v ) m.(O,oo) x D,

v(0,z) = uo(z) in D, (1.2)
v

=y +g(v)v=0 on (0,00) x dD.

A non-negative solution u of (), is said to be globally asymptotically stable if all the
global solutions v(¢,z) of (1.2), which means that v(-,z) € C*((0,0)), v(t,-) € C*(D)
and v satisfies (1.2), tend to u as t — oo in the uniform topology of z € D for any
non-negative, non-zero initial data uo € C%(D).

In the linear boundary condition case, the existence, uniqueness and stability for
positive solutions have been discussed by many authors (cf. [4, 2, 5, 9, 16]). The
following result for the Neumann case is due to Hess [10].

THEOREM 1. Suppose g = 0. Then the following two assertions hold.

(1) Assume [pmdz < 0. Then there ezists a unique positive solution u(\) of (*)a
for each X > Xi(m) with the condition that ||u(})|c25 — 0 as A | Ai(m), and
no positive solution for any 0 < A < A\;(m). In addition, the trivial solution u = 0
of (*)x is globally asymptotically stable for 0 < A < A(m) and the unique positive
solution u(X) is globally asymptotically stable for A > A;(m).

(2) Assume [, mdz > 0. Then problem (x)x admits a unique positive solution for
all X > 0 and the unique positive solution u()) satisfies

fDmd:z:

u(A) alD]

—0 as A]O,
C3(D)

where |D| denotes the volume of D . Additionally the unique positive solution u(X) is
globally asymptotically stable for A > 0.

The purpose of this note is to study the existence of the steady state of (1.2) for non-
negative, non-zero, small initial data ug € C?(D) and to investigate its asymptotic
behavior as the diffusion rate 1/\ increases to an unlimited extent, that is, A | 0.
The motivation for the study arises from the fact that, in the case of nonlinear bound-
ary conditions, the uniqueness for positive solutions does not necessarily hold (cf. [1,
Theorem 2.6], [13, Theorem 4.6.3] for the uniqueness results).

For each non-negative solution u of (x)x let 41(\,u) be the first eigenvalue of the
linearized eigenvalue problem (see [1, Theorem 2.2])

{ —Aw = A(m — 2au)w +y(A\,u)w  in D,
%% + (¢'(u)u+9g(u))w = y(\,u)w on 4D.
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A non-negative solution u of (x)x is called stable if v;(),u) is positive and unstable
if 41(A,u) is negative. Concerning the trivial solution of (%), one can show that if
Jpmdz < 0, then it is stable for 0 < /\ < A1(m), and on the other hand, it is unstable
for A >0 if [,mdz>0.

For our purpose we discuss the existence of the minimal positive solution of (*)y
where the trivial solution 4 = 0 is unstable. We say that the minimal positive solution
u(A) is one-side asymptotically stable if all the global solutions v(¢,z) of (1.2) tends
to u(A) as ¢t — oo in the uniform topology of z € D for any initial data uo € {u € _
C*(D): 0 <u<u(A)}\{0}.

Now we can formulate our main results.

THEOREM 2. Suppose that nonlinearity g satisfies the condition
g(0) =0 and g4'(0) > 0. (G.1)

If [,mdz >0, then there ezists the minimal positive solution u(A) of (¥)x for A>0
small, which is one-side asymptotically stable and satisfies lu(M)llczm) — 0 as A L0.

On the other hand, we have the following:

THEOREM 3. Suppose that g satisfies the condition g(0) = 0. If fD mdz > 0, then
the following assertions hold.

(1) Assume that g is strictly negative for t > 0, and that there ezists a constant
My > 0 such that
tg(t) > —My for t>0. (1.3)

Then the minimal positive solution u(A) of (%) ezists for all X > 0, and it is one-side
asymptotically stable and satisfies :

el e, o ALD. (1.4)

(2) Let m4(z) = max(m(z),0). Assume that there ezists a constant t; > 0 such

that
{ g(tl) =0,
gt) <0 forall0<t<t;.

Then we can prove the following three assertions:
(2-1) If t; s so large that
o, -
i | +“C(D),
a
then the minimal positive solution w()) of () ezists for all A > 0 with the property
that w()) is one-side asymptotically stable and satisfies

lu(X) = t1llgzy —> 0 as AL0. (1.5)
(2-ii) On the other hand, if t; is so small that '

lmillem
1 < - ( )a
a
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then we have the same conclusion as in (2-i) whenever g(t) >0 for all t >, .
(2-iii) Assume condition (1.3), and assume g(t) <0 for all t > ¢, . If t; is so small

that
f D mdzx

i
1< D]

then problem (%) admits the minimal positive solution u(A) for all A >0, and it is
one-side asymptotically stable and satisfies (1.4).

Finally we mention case [, mdz = 0. This case is more delicate, where an a prior:
bounds below for positive solutions which we will obtain does not work for the charac-
terization of the behavior of the minimal positive solution, more precisely, the a priori
bounds is not useful to exclude the existence of the positive solutions uy of (¥)x such
that usllcm) — 0 as A | 0. However, using a stability argument, we overcome this
difficulty.

Now we have the following:

THEOREM 4. Suppose that g satisfies the condition
g(0) =0 and g'(0)<0. (G.2)

If [,mdz =0, then for every a >0 there ezist constants A*(a),t*(a) > 0 such that
a positive solutton u of (¥)x is unstable whenever 0 < A < A*(a) and u < t*(a) on

D.
As a corollary from Theorem 4, we have the following:

COROLLARY 5. Suppose condition (G.2). Then assertions (1), (2-i) and (2-ii) of The-
orem 3 remain true for case fD mdz = 0.

In the next section we give an outline of the proofs of Theorems 2 through 4. For
further details, the reader should refer to [19].

2. Outline of proofs. The proof of Theorem 2 relies on the local bifurcation theory
due to Crandall and Rabinowitz [7, 8]. Applying the theory to our problem, we have a
unique positive solution branch (A(s),u(s)) with s > 0 small, such that (A(0),u(0)) =
(0,0) . Green’s formula gives us

g'(0)s(9D)

X(0) = [mdzr

where o(0D) is the surface measure of 8D . This formula and (G 1) characterize the
behavior of u(s) .
Next we present an outline of the proof of Theorem 3 only for cases (2-i) and (2-iii).

Let 1()) be the positive eigenfunction, normalized as ||¢1(A)|¢m) =1, correspond-
ing to the first eigenvalue p;(A) of the eigenvalue problem

{ —Ap1(A) = dmp1(A) + p1(A)ep1(A) in D,
a“’}TFA) =0 on 8D.
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1t follows from [14] that x3{}) < 0 for A > 0. Therefore we can show that ep1(A)
is a sub-solution of (), whenever ¢ > 0 is sufficiently small. On the other hand, we
see that £, is a super-solution for case (2-i), and that a large super-solution can be
constructed for case {2-iii} by virtue of {(1.3). Hence there exists the minimal positive
solution by the super-sub-solution method ([1, Theorem 2.1}). '

To characterize the behavior of the minimal positive solution, we need to establish
an a priori bounds below for positive solutions. To construct the sub-solution ep;{})
derives the following a priori bounds for positive sointwns For any positive solution u
of (¥)x we have

w > min{mgit(’él ti} p1{A}) on D. {(1.6)
Since Green’s formula gives us
. w(A) anmd“’
e S W (1.7)

we can exclude the positive solutions of (), that tends to zero as A ] 0.
For case (2-1) we know that constant #; is a super-solution, which leads to assertion
(1.5). For case {2-iii) an analogous one as in {1.6) is given as

A -
u > M(}\){p {A} on D : (1.8)
for any positive solution w of (). Assertions (1.7) and (1.8) provide us

“““c{“ﬁ) >t

for any positive solution u of (*)a whencver A>01s snﬂicimtly small, which leads
to assertion (1.4).
Finally we show Theorem 4. As to the first eigenvalue v (A, u) we can show

+2(A u)(ID| + 0(8D)) < 2aA fD wde + fa (W + g(w) do

On the other hand, we can verify that

g'(t)t + g(t)
t

With some constant ag > 0, that

< —ap whenever £> 0 is small,

ji;D ©1{\) do > B0 whenever A > 0 is small,
with some constant Sy > 0, and that |
| | #t\(;\ ) < —dg whenever A >0 is small,
ﬁth séme constant do > 0. The above three conditions. and (1.6) leads to the assertion
mn{X v} <0 whenever A, u > 0 are sufficiently smaﬂ
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